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Introduction
Systems of time-periodic differential equations arise in various models drawn from biology,
chemistry and physics. One example, and the motivation of the current research, is the inves-
tigation of stability of oscillons: radially symmetric solutions, which are localized in space and
periodic in time. Oscillons were first observed in experiments in 1996 when granular materials
and clay suspension were vibrated vertically (figure 1). Different amplitudes and frequencies re-
sult in different pattern formations. Reaction-diffusion systems, such as models of light-sensitive
Belousov-Zhabotinsky reactions, possess the same dynamics.

Figure 1: Oscillons in vibrated granular materials [1] [left] and in vibrated clay suspension [2]
[right]

There are two traditional methods for finding oscillons in mathematical models and determining
their stability: initial value problem solvers and continuation (using Newton’s method). The
continuation method is computationally inexpensive and more systematic, relative to the initial
value problem solvers. Unlike initial value problem solvers, the continuation method finds both
stable and unstable oscillons, but it requires a way to determine their stability (that is, whether
they disappear over time). A novel method for determining stability of both Partial Differential
Equations (PDEs) and Ordinary Differential Equations (ODEs) is presented in the current paper.
For ODEs, the idea relies on the fact that if the absolute values of all the eigenvalues of the flow
(so-called Floquet multipliers) are at most one, then the oscillon is stable. Hence an accurate
approximation of the spectrum (or just of the important eigenvalues - the biggest ones) is suffi-
cient to determine whether the oscillon is stable. For PDEs, we can use the same techniques if we
first discretize over time and space, and then apply the theory to the resulting systems of ODEs.
In the current thesis we have assumed that a time-periodic system of ODEs is given, and will
not consider whether it originates from a PDE model. The paper presents the theory behind a
numerical algorithm of finding the spectrum of a given time-periodic system of ODEs. Instead of
calculating the full solution map of the ODE and calculating its spectrum, we pose the problem as
an eigenvalue problem for an appropriate operator. The problem is then reformulated in a more
convenient way by breaking down this operator into an invertible and a non-invertible part, so
that the spaces considered are essentially RN and we have standard perturbation theory available
to us. A key Rouche-type theorem states that, under appropriate conditions, if two operators are
close, then their spectra are close, that is, a good approximation is obtained. The two operators
considered are the original one and its Galerkin approximation to N Fourier modes, which, if
chosen properly, represents the truncation performed when the algorithm is implemented on a
computer.

The Problem
Find all λ for which

(
∂

∂t
+ I− A(t)− λ)u := (L− λ)u = 0 (1)

has a solution u 6= 0.

Reformulation of the Problem
There are two main difficulties which drive the reformulation of the problem into one which can
be considered numerically. The operator L that we consider is originally posed as L : H1

per(0, p)→
L2
per(0, p). A possible way of investigation would be to project it to RN : LN : RN → RN and to

investigate how the spectrum of LN compares to that of L. However, it would be difficult to
compare spaces RN and H1

per(0, p), especially when we want the dimension N to increase. At the
same time, L : H1

per(0, p) → L2
per(0, p) is awkward as L : L2

per(0, p) → L2
per(0, p) is not bounded

and it is difficult to apply perturbation theory directly. Hence, we reformulate the problem as
follows: we split L as L = L0 − A(t) where L0 = ∂

∂t + I. Note that L0 : H1
per(0, p) → L2

per(0, p) is
invertible and has a bounded inverse that is also compact. Then, the problem to find all λ for
which

(L− λ)u = 0 (2)

has a solution u 6= 0, is equivalent to solving

Results In Pictures

Figure 2: Floquet exponents lie on lines

Figure 3: Backward differences approximation of order 1 (left) with v′ = 0v on [0, 2π] with
m = 80 mesh points. A zoomed-in image near the origin (right) shows that the approximation

near the origin is good.

Figure 4: Backward differences approximation of order 6 (left) v′ = 0v on [0, 2π] with m = 80
mesh points. A zoomed-in image near the origin (right) shows that the approximation near the

origin is good, in fact a lot better than the backward difference approximation of order 1.

Figure 5: Spectra using the Galerkin method with 20 modes (left) and 21 modes (right).
Spurious eigenvalues (near 0.5) occur when the number of modes is even.

Fu := L−1
0 (L− λ)u = (I− L−1

0 (A + λ))u = 0 (3)

The truncation TN we will consider is

TNu := (I−QNL
−1
0 (A + λ))u = 0, (4)

where QN : L2
per(0, p) → L2

per(0, p) projects onto a (2N + 1)-dimensional subspace. We analyze
the problem in this setup, using standard perturbation theory. The outline of the paper is the
following. First, we compare the analytical formulation and the practical implementation and
prove equivalence under certain conditions. Then, we show that the difference between the
truncated and the full operator

WN := TN − F = (I−QN)L−1
0 (A + λ)

is small in norm. Next, we explain what we mean by eigenvalue multiplicity, so that we can prove
that the eigenvalues of the full and of the truncated operator are close, too. Finally, we present
in more detail a comparison between finite differences methods and the method developed in
the paper.

Theoretical Results
Theorem. (No Spurious Eigenvalues and Multiplicity Conservation) For every arbitrarily small ε > 0
there exists a natural number N0 such that for each N > N0 all the eigenvalues of the approximation

TN = [I−QNL
−1
0 (A + λ)]v = 0

belong to the union of ε-balls around the Floquet exponents. Moreover, their multiplicity is preserved:
if the ε-balls around different Floquet exponents do not intersect each other, then there are as many
eigenvalues of the approximation in each ε-ball as the multiplicity of that Floquet exponent.

Conclusion
In the paper we proved the uniform convergence in location and multiplicity of the numerically
computed eigenvalues to the truncated operator TN to the Floquet exponents on any bounded
domain. There have been no restrictions imposed on the time-periodic matrix A(t). Less general
results have been shown in [4] and [5].
Deconinck and Kutz [4] work in a slightly less general setup, do not prove convergence of their
method and have more complicated computations.
Johnson and Zumbrun [5] prove convergence in location and multiplicity only for operators of
non degenerate type under certain conditions. Their proof uses more complicated methods than
used here.
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